Certification of Adhesive Bonded Repairs for Environmental Durability

Andrew Rider* and Roger Vodicka

Air Vehicles Division,

DSTO, Australia

*Contact:

Dr Andrew Rider,

AVD, DSTO, 506 Lorimer St, Fisherman's Bend,

Victoria, Australia, 3207

pH: 61 3 9626 7393 fax: 61 3 9626 7174

Email: andrew.rider@dsto.defence.gov.au

Technology Organisation

Collaborators

• RAAF

Dr Madabhushi Janardhana, ASI-4A, DGTA SQNLDR Adrian MacKenzie, ASI-4, DGTA Mr Max Davis, ASI-4D, DGTA

•Aerostructures

Mr Paul Livingstone, Senior Statistician

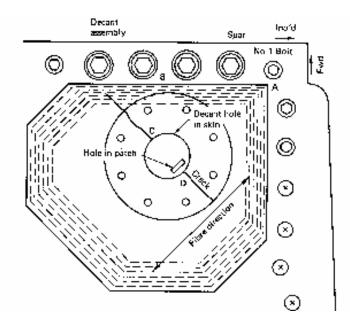
•AVD, DSTO

Dr Alan Baker, Emeritus Research Leader Dr Chun Wang, Head Composite Research

Talk Outline

- Background (DSTO History)
- Current Status of Bonded Repairs (RAAF Usage)
- Preferred Status for Bonded Repairs (Justifying credit)
- Environmental Certification (Definition and Issues)
 - Strategy
 - Current DSTO and RAAF Efforts
 - Current Limitations to Approach
 - Solutions

Technology Organisation Background (DSTO History)


- DSTO Research into Crack-Patching pioneered by Alan Baker
- Large range of applications to RAAF Aircraft since mid 70's
 - examples include:
 - MB-326H
 - Mirage III
 - C-130E
 - F-111C

Anstralian Government Department of Defence Defence Science and Technology Organisation

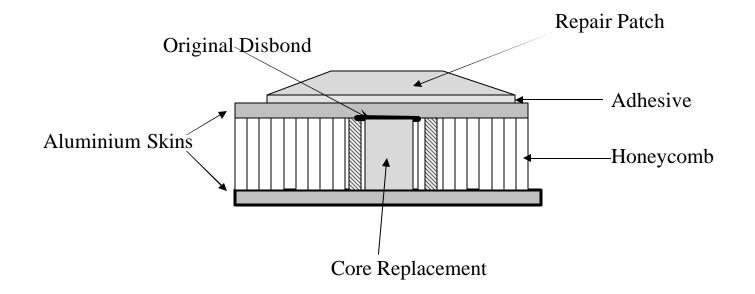
Background (DSTO History)

- Mirage III cracking out of fuel decant hole
- 180 repairs
- 7 bonding failures over 8 years due to voiding in adhesive during cure, caused by high humidity in tropics

Anstration Government Department of Defence Defence Science and Technology Organisation

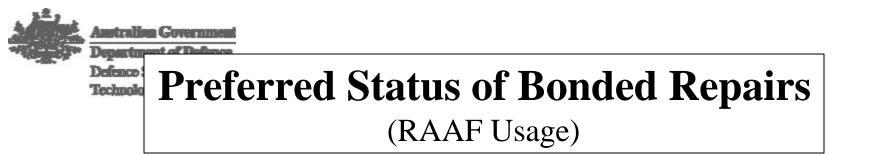
Background (DSTO History)

- C-130E wing risers
- Stress-corrosion cracking
- More than 1000 repairs
- 20 years of service, but few cases of cracking occurring after patching
- RAAF able to retain original wing skins for full service life (\$130M savings)

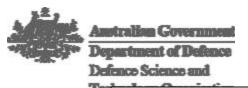


Background (RAAF History)

- F-111C metal-to-metal repairs on honeycomb sandwich panels
- Grit-blast and silane treatment
- 30 repairs per month since 1995, only 2 known bond failures due to technician disregarding process requirements


Current Status of Bonded Repairs (RAAF Usage)

• Repairs to Primary Structure use "Fail-Safe" Approach


* *Reinforcement* only allowed if original safety margin on DLL is retained if patch is lost (no-credit given to repair)

– eg. Fighter aircraft- crack in single load path component retains
DLL strength (OK for preventative patch, small crack or slow growth)

– eg. Transport aircraft- multiple load path component retains FailSafe load strength if single path has failed (doesn't significantly alter current maintenance and inspection process)

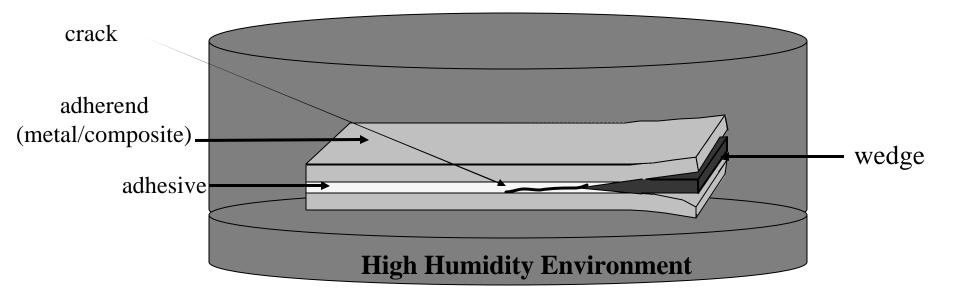
- Repairs to Primary Structure given Full Credit
 - 1. credit given for patch to restore static strength (DUL)
 - 2. credit given for fatigue life restoration
 - 2.1 patch managed using *Damage Tolerant* approach
 - 2.2 inspection intervals based on time for crack in repaired structure to reach critical size for DLL
 - 3. credit given for **Environmental Durability**

• Patch Structural Credit only achievable if guarantee is provided for:

– Environmental Durability

- Define requirement
- Define acceptance test
- Define pass/fail criteria
- Correlate test against service performance

Develop Risk and Reliability (R+R) Model to Quantify Repair
 Failure Probability



Environmental Certification of Bonded Repairs – Requirement

- 1. Retain initial design capability for required life of repair
- 2. Any reduction in design capability will be identified by a management strategy prior to any compromise in air worthiness

- Potential Candidate: Wedge Test
 - crack measured in elevated temperature/high humidity
 - pass/fail based on crack-length, crack-growth and failure mode
 - presently used by RAAF for technician and process qualification

Wedge Test

• Provides a template for assessing the major risks associated with the adhesive bonding operation

- Test Matrix can be defined to establish
 - pass/fail criteria for given system for ideal case
 - sensitivity studies to establish effect of process deviations, environmental effects and human factors
 - data-basing can establish long-term trends (batch effects, individual performance, unit standards....)

Environmental Certification of Bonded Repairs – Correlation with Service Data

•compare service performance of bonded repair to wedge data

service performance determined through

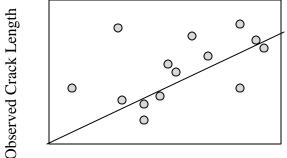
- tear down inspection
- crack growth measurements (structure)
- NDI (ultrasonics, tap-hammer)
- need to define repair condition
 - strength (flatwise tension...)
 - failure mode (cohesion, adhesion...)

Environmental Certification of Bonded Repairs – Risk and Reliability (R+R) Model

•Modelling to Quantify Risk of Repair Failure

– optimise wedge test for pass criteria and develop R+R model

- modify model for application to bonded repairs
- validate model by correlation with service performance
- optimise model for service loads, location and environment
- verify optimised model with independent service data


Australian Government Department of Defence Defence Science and Technology Organisation

R+R Model

1. Optimise Wedge Test

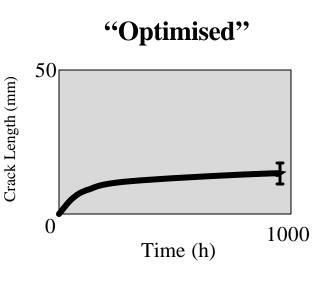
Step 1:

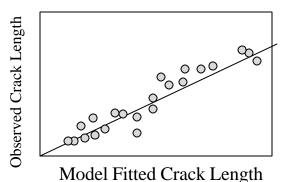
"Current" Cuck Fendth (Implicit Constraints) Cack Fendth (Implic

•regression model current wedge data with current measurable predictor variables

 $crack(mm) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

 β : fitted coefficients


X: predictor variables


eg. Adhesive batch, age, surface treatment, alloy

•determine pass/fail rate based on acceptance criteria (eg. 1/100)

Anstralian Government Department of Defence Defence Science and Technology Organisation

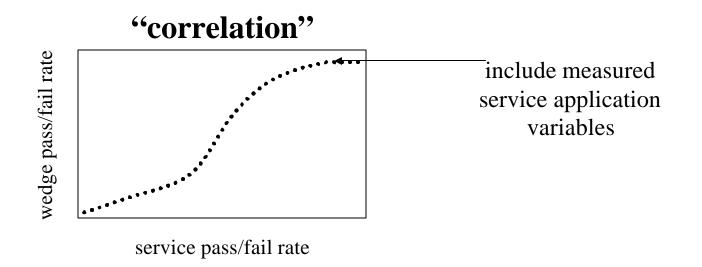
R+R Model

- 1. Optimise Wedge Test Step 2:
 - Identify new predictor variables and establish measurement procedures
 - Implement new process and remodel data $\operatorname{crack}(mm) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \dots$

 β : fitted coefficients

X: predictor variables

Adhesive batch, age, surface treatment, alloy, technician experience, location, surface condition, adhesive condition....

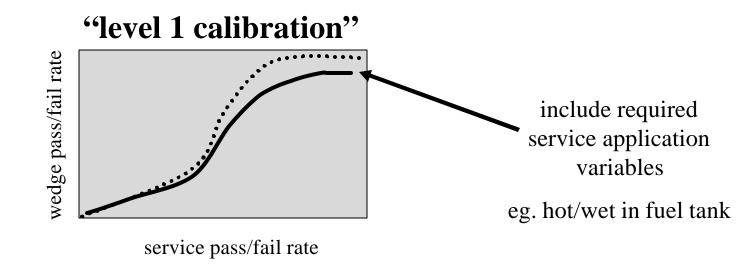

• determine new pass/fail rate based on acceptance criteria (eg. 1/1000)

R+R Model

2. Correlate Wedge Test with Service Data

Step 1:

- determine service condition of repairs (establish acceptance criteria and testing)
- establish controls employed during repair application
- back-calculate wedge performance and the "effective" pass/fail rate
- correlate wedge against service pass/fail rate

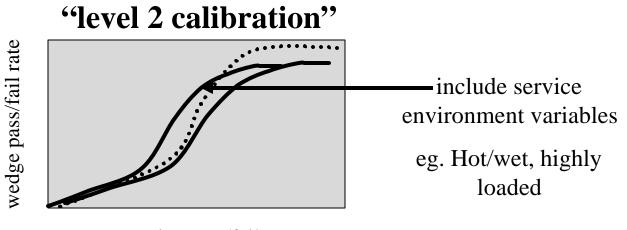


R+R Model

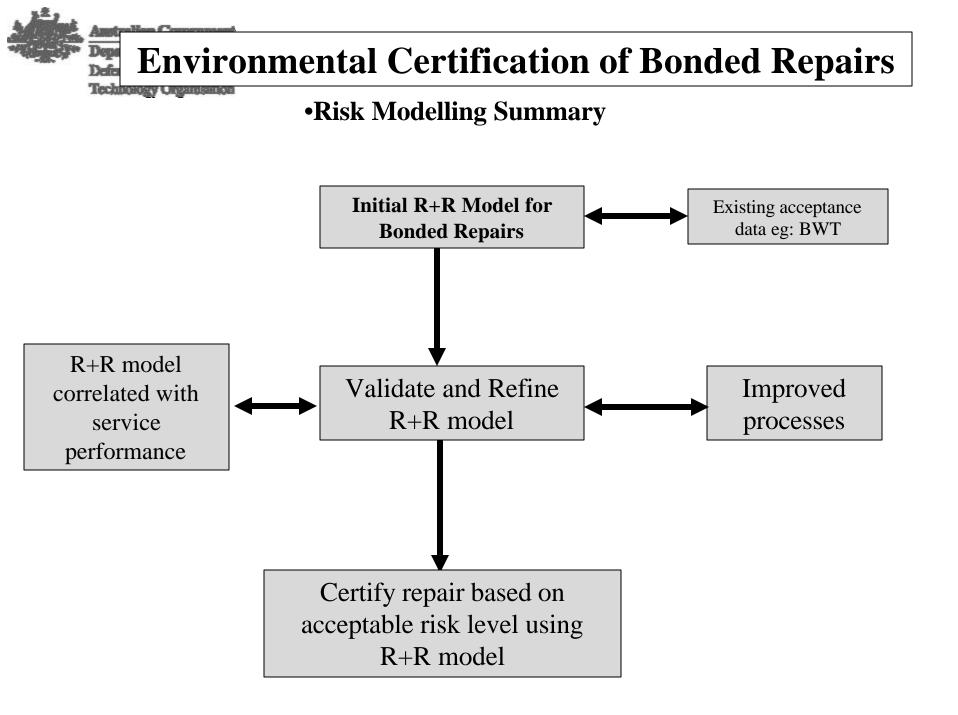
2. Correlate Wedge Test with Service Data

Step 2:

- identify additional predictor variables unique to repair application
- implement controls to record predictor variables during repair to conform with wedge acceptance criteria
- determine effect of recorded repair application variables on wedge result
- remodel wedge test and re-calibrate against service performance



R+R Model

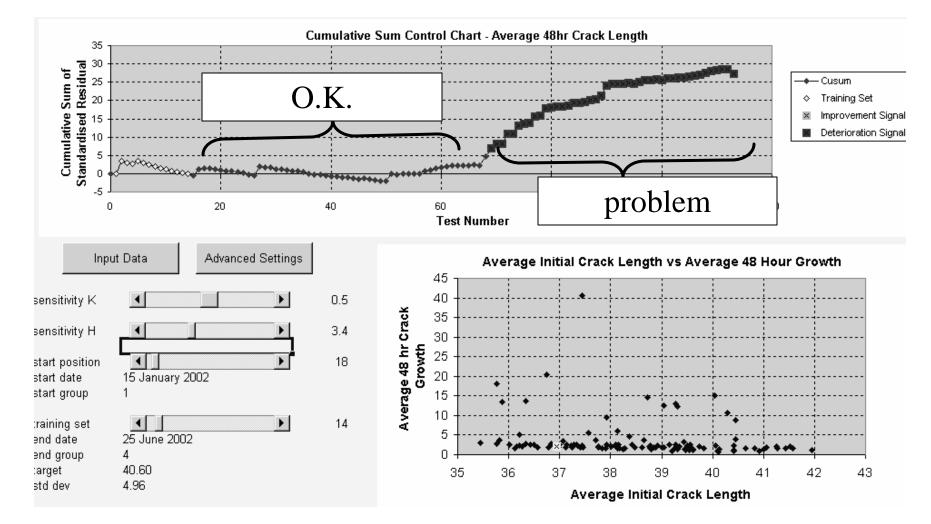

2. Correlate Wedge Test with Service Data

Step 3:

- identify and record predictor variables unique to repair service environment
- determine effect of recorded repair environment variables on service performance
- remodel wedge test and re-calibrate against service performance

service pass/fail rate

Environmental Certification of Bonded Repairs –Current DSTO and RAAF Efforts


Optimisation of RAAF Wedge Test Results

•Process Control Improvements

- "Worm-Plot" to monitor process drift, new controls
- Infrared to assess quality of epoxy-silane
- grit-blasting to be monitored in-situ using Gloss-Meter
- coupling agent kits (accuracy and pH control)
- Surface Quality Meter to replace water-break test

Still some deviation cannot be explained through failure analysis:
Surface Analytical tools being applied (ToF-SIMS, XPS, FT-IR...)

Gloss-Meter

• reduce reliance on operator skill

Surface Quality Meter

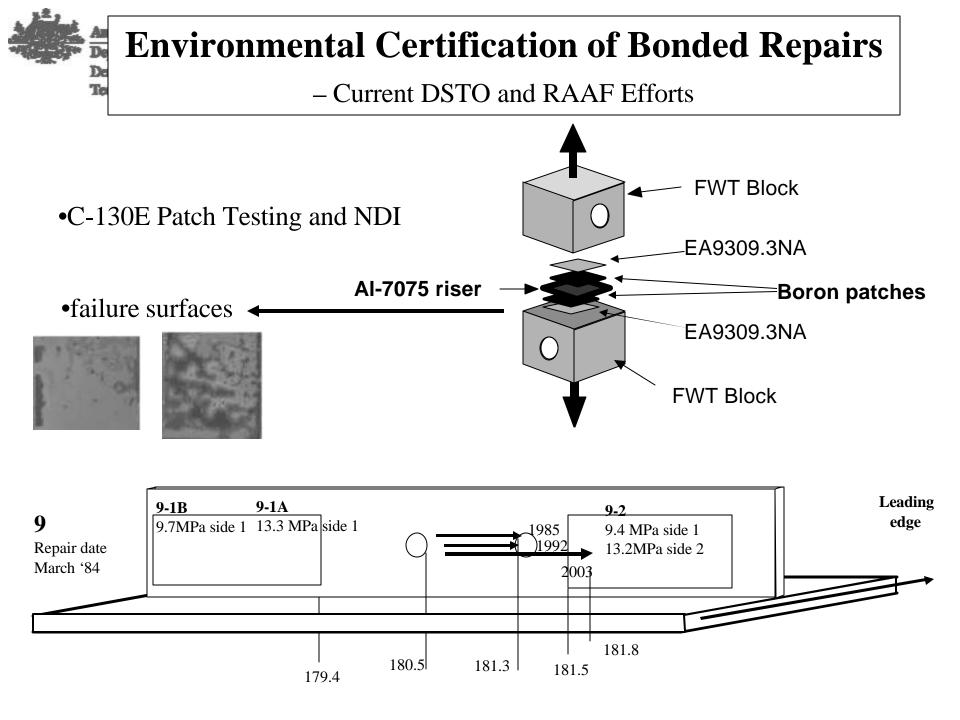
•Water-break test limited

antralian Government Innertment of Defence

Environmental Certification of Bonded Repairs

-Current DSTO and RAAF Efforts

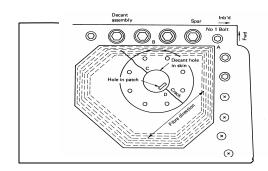
- Regression Modelling
 - wedge data from 15 years of research and RAAF requalification examined
 - obvious sensitivity factors identified and modelled


– experience, location, adhesive batch, grit-blast quality,
supervisor, organisation, coupling agent pH.

• additional testing required to substantiate effects and data mining of available wedge data bases still needed

- Current DSTO and RAAF Efforts

- Teardown Inspection of Patches
 - More than 50 patches from C-130E recovered and being inspected
 - example of minimal treatment and low QA in hostile application
 - limited cases of substantial environmental degradation
 - Flatwise Tension Testing (FWT) and failure surface inspection
 - NDI cross-check with aircraft records



- Current DSTO and RAAF Efforts

Teardown Inspection of Patches

- 15 patches from Mirage III recovered and being inspected
 - PANTA process, well documented procedures
 - samples to be tested to failure (FWT?)
 - NDI cross-check with teardown inspection

- Current DSTO and RAAF Efforts

•Inspection of Patches

- Repairs conducted on **F-111C** from '97-'99 being inspected
 - grit-blast silane process, well documented procedures
 - 500+ repairs "available"
 - direct correlation with large wedge test data-base
 - 45 repairs tap tested (to date)
 - 2 repairs with damage (1 impact, 1 void in centre)
 - retired panels to be inspected by teardown

- Current DSTO and RAAF Efforts

•DSTO Repair Survey 2002

- More than 20 organisations contacted
- 7 countries responded
- 16 aircraft types
- More than 6000 repairs (composite and metal to composite)
- 10 different surface treatments
- 20,000+ flying hours
- some repairs "available" for teardown inspection
- clearly large database already in existence

•Data and retired repairs

• More repairs required for teardown ("PABST", C-141, USN F-5)

 provide sufficient correlation in service performance for varied operating conditions and model validation

• Wedge data from fabrication and repair required to establish effects that can only be established over long periods

– eg. Batch effects

•Additional testing to improve R+R models

– sensitivity factors, improved statistical confidence

Environmental Certification of Bonded Repairs -Collaboration

•Co-ordinated efforts

• consensus on environmental certification strategy

- acceptance test, pass/fail criteria, FARs, ASTM.....

- consolidate data collection and tear-down inspection
 - download wedge data to Web-site, secure or free access database
 - freely share teardown inspection data
 - define risk-model development phases and contact interested parties

Comments or Questions?